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The behaviour of an evolving, stably stratified turbulent shear flow was investigated 
in a ten-layer, closed-loop, salt-stratified water channel. Simultaneous single- 
point measurements of the mean and fluctuating density and longitudinal and 
vertical velocities were made over a wide range of downstream positions. For strong 
stability, i.e. a mean gradient Richardson number R, greater than a critical value 
of Ric, x 0.25, there is no observed growth of turbulence and the buoyancy effects 
are similar to those in the unsheared experiments of Stillinger, Helland & Van Atta 
(1983) and Itsweire, Helland & Van Atta (1986). For values of Richardson 
number less than Ric, the turbulence grows a t  a rate depending on R, and for 
large evolution times the ratio between the Ozmidov and turbulent lengthscale 
approaches a constant value which is also a function of Richardson number. 

Normalized velocity and density power spectra for the present experiments 
conform to normalized spectra from previous moderate- to high-Reynolds-number 
studies. With increasing r = ( x / a )  (do/&) or decreasing stability, the stratified shear 
spectra exhibit greater portions of the universal non-stratified spectrum curve. The 
shapes of the shear-stress and buoyancy-flux cospectra confirm that they act as 
sources and sinks for the velocity and density fluctuations. 

1. Introduction 
In the earliest studies of unstratified, uniform-gradient shear flows the turbulent 

kinetic energy was observed after an initial decay to approach a constant level 
downstream (see Rose 1966, 1970 ; Champagne, Harris & Corrsin 1970, hereinafter 
referred to as CHC; Mulhearn & Luxton 1975). The apparent constant level of 
the turbulent kinetic energy was later found to be a result of insufficient wind- 
tunnel length for the values of applied shear. The dimensionless development time 
r = ( x / a )  (dO/az) did not exceed 3.6 in these experiments. Growth of the turbulent 
kinetic energy was first observed by Harris, Graham & Corrsin (1977, hereinafter 
referred to as HGC) for r exceeding 4. This was later corroborated by Tavoularis 
& Corrsin (1981, hereinafter referred to as TC) in an experiment where they super- 
imposed a passive scalar (weak temperature gradient) on the same velocity field. 

Earlier, Webster ( 1964) had succeeded in generating an actively stratified shear 
flow in a wind tunnel using temperature to produce buoyancy effects. At 1.73 and 
4.57 m downstream of the shear generating grid, Webster measured turbulent 
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diffusivities, kinetic energies and lengthscales as a function of the gradient 
Richardson number Ri = N2/(i317/az)2, where N 2  = - (g /p )  (ap/az). Unfortunately, 
Webster found a different dependence on Ri a t  each position, which he attributed to  
the flow not reaching a ‘steady state’. The mean velocity shear of Webster was 
produced by a grid of unequal-diameter bars. A rough estimate of the resulting r 
associated with Webster’s grid can be obtained from the formula of Owen & 
Zienkiewicz (1957) : U ( Z )  = Oc[l +0.85(z/h-$)], 

where U ( z )  is the average velocity a t  the height z measured from the tunnel floor, 
gc is the centreline velocity and h the height of the tunnel. This formula predicts 
r x 3 and 7 a t  the respective measuring positions of 1.73 and 4.57 m downstream of 
the grid. Apparently the measurements at the first position ( r  < 4) were still in the 
region of decaying turbulence behind the shear generating grid. The present study 
was designed to investigate how, as a function of Ri, the turbulent kinetic energy 
grows or decays downstream beyond the initial influence of the grid. The unstratified- 
shear experiments of Rohr et al. (1988, hereinafter referred to as RIHV) had values 
of r exceeding 4 and as expected distinct growth in the turbulence was observed, 
occurring first around r = 4.5.1- By repeating these measurements with different 
density gradients the effect of buoyancy on the evolution of turbulence in a uniform 
mean shear could be investigated. 

Section 2 briefly describes the experimental facility and instrumentation. Relevant 
dynamical equations, lengthscales and dimensionless parameters are presented in $ 3. 
The behaviour of the turbulent kinetic energy, turbulent production and buoyancy 
flux is investigated in $4.1 for different values of Richardson number and 
development time 7. Section 4.2 compares the present evolution of turbulent 
lengthscales with other laboratory stratified-shear-flow measurements, as well as the 
unsheared stratified experiments of Stillinger, Helland & Van Atta (1983) and 
Itsweire, Helland & Van Atta (1986) (hereinafter referred to  as SHV and IHV 
respectively). Section 5 investigates the general behaviour of the velocity and density 
spectra. Section 6 discusses possible similarities with oceanographic data and finally, 
$7 contains the concluding remarks. 

2. Experimental facility 
The UCSD ten-layer, closed-loop water channel was designed to produce stably 

stratified, turbulent shear flows in which measurements could be extended sufficiently 
far downstream to study evolving turbulence statistics. The basic facility has been 
described in detail by Stillinger et al. (1983). 

Two different inlet configurations were employed in the present study. The first 
one was identical to that of SHV and IHV, thereby providing the opportunity for 
direct comparison with their unsheared stratified measurements. The second inlet 
configuration employed consisted of the diffuser section described by RIHV. With 
the diffuser section in place it was found that the desired mean velocity profile was 
maintained much further downstream. With either inlet section, the velocity profile 
was observed to  be time independent and decayed slowly over the range of 
downstream measuring positions. The density gradient was observed to decrease 

t It should be noted that for the measurements of Karnik & Tavoularis (1983) taken behind 
grids separated from the inlet by relatively large values of 7, the growth of the turbulence around 
7 = 4 (7 origin taken a t  the grid) was not observed (see RIHV). 
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FIGURE 1. Vertical velocity (a )  and density ( b )  profiles without diffuser (same inlet conditions as 

SHV and IHV). 0, x / M  = 20; *, x / M  = 70 (30 min later). 

over time, but a t  a rate slow enough that the turbulent ,density and velocity fields 
a t  a point were nearly statistically stationary over each period of data averaging. 
Figures 1 and 2 compare typical mean velocity and density profiles a t  two 
downstream locations for both configurations. 

The instrumentation was the same as that used by SHV and IHV. Standard 
quartz-coated TSI films mounted on an X-film probe provided measurements of the 
downstream (0, u) and vertical velocity (w) components. Using the error analysis of 
Stillinger (1983) the salinity contamination of the measured velocity components 
was found to be negligible and the low-frequency temperature drift was compensated 
for with temperature measurements from a platinum resistance thermometer. A 
four-wire conductivity probe, having both good spatial resolution ( < 2.5 mm) and 
very low drift, developed by Head (1983), measured the local instantaneous 
conductivity of the salt solution. The instantaneous conductivity was then converted 
into an instantaneous density ( p , p ) .  Earlier work by Stillinger (1981), where the 
magnitude of the density fluctuations were comparable with those of the present 
investigation, showed that the conductivity probe resolved a t  least 90% of the 
density variance but could not resolve the scalar dissipation rate. The centre-to- 
centre separation between the conductivity and X-film probes was small enough 
( < 1 mm) to measure accurately the buoyancy flux (SIP)  (pw) without correcting for 
sensor separation. 

The turbulence statistics essential to this study which could be accurately 
estimated include the r.m.s. horizontal and vertical turbulent velocity fluctuations 
(u’ and w‘, respectively), the r.m.s. density fluctuation (p’) and the kinetic-energy 
dissipation rate (8). The variances on estimates of the buoyancy flux ( g / p )  (pw) and 
turbulent production -uw( O/az) were found to be significantly larger. Longer 
averaging times are needed to determine the statistics of cross-moments (e.g. m, pw) 
to the same accuracy as the variances (e.g. a2, w2,p2) .  In  the water channel, record 
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FIGURE 2 .  Vertical velocity ( a )  and density ( b )  profiles with diffuser. ( a )  0, x / M  = 20; 0, x / M  = 
160. ( b )  Density profiles 0, A, 0 were taken 30 min apart;  by adding fresh and saturated salt 
water as needed the kink in the first profile (0) could be smoothed and the resulting profile (A) 
could be maintained (0). 

lengths are limited by dissolved gases in the water coming out of solution and 
forming bubbles on the heated films (see Stillinger 1981). Generally the films were 
operated a t  about 12 "C above the ambient fluid temperatures and periodically swept 
clean by a jet of air, allowing between 10 and 16 s of continuous uncontaminated 
data. The total number of records is limited by the slowly decaying density 
profile. 

The density profile decays in time because the water is recirculated and, therefore, 
measurements taken at later times are associated with smaller mean density 
gradients. The decrease of the density gradient for the first set of experiments, with 
the same inlet configuration as SHV (see figure i) ,  is found to be relatively fast. I n  
these cases, the faster decay of the downstream velocity gradient increased mixing. 
For the second set of experiments, which incorporated the diffuser of RIHV, the 
decay of both the velocity and density profiles is significantly reduced (see figure 2). 
For either set of measurements, the density profile changes most rapidly with 
downstream distance in the upper part of the water channel where the local 
mean velocities are the largest. All detailed turbulence measurements were taken 
a t  the midpoint of the channel where downstream changes in aO/az, aO/ay 
(nearly zero), and ap/az are smallest. There the turbulent lengthscale, as measured by 
L, = -p'/(ap/&), always remained a t  least several times smaller than the 
extent of the linear part of the accompanying velocity and density gradients. 
The corresponding transverse (y) mean velocity and density profiles were observed 
(Rohr 1985) to  be uniform over distances at least as great as the linear part of 
the vertical mean velocity and density gradients. 
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3. Theoretical background 
3.1. Dynamical equations 

The flow is assumed to be incompressible, steady and transversely homogeneous. The 
density fluctuations are small compared with the mean density so that the 
Boussinesq approximation can be invoked. The general equations for the individual 
components of the fluctuating kinetic energy reduce to 

where 0 is the mean longitudinal velocity, u, v and w are the velocity fluctuations 
in the x-, y-  and z-directions, respectively, p is the mean density, p is the density 
fluctuation, and v is the kinematic viscosity. Production of kinetic energy only occurs 
in (1) for the u-component. The v- and w-components receive their energy through 
the pressure interaction terms. 

Similarly the equations for the fluctuating potential energy, shear stress and 
buoyancy flux become respectively (e.g. Launder 1975) 

where L)  is the scalar diffusivity. Earlier experiments (HGC) implied that the triple 
correlations in (l) ,  ( 2 ) ,  ( 3 )  and (5) were nearly homogeneous in x and z when the flow 
was not stratified. If the same homogeneity also applies to p2u, p2w, piin, 3 and the 
pressure-velocity and pressure-density correlation then (1)-(6) lead to 

___ 

where 
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is the rate of dissipation of turbulent kinetic energy, 
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_ - _  
is the rate of diffusive destruction of density fluctuations and 4” = u2+v2+w2. 
Although pressure interaction terms do not appear explicitly in (7) ,  this does not 
necessarily imply that as a result of the previous approximations there is no longer 
a mechanism for the redistribution of energy among the velocity components. For 
incompressible flow 

- _ _ -  au av aw 
ax ay ax 

p-+p-+p- = 0, 

therefore these pressure terms can exchange energy between the various components 
without appearing in (71, since when summed they do not change the total energy 
(Tennekes & Lumley 1972). Equations (7)-(10) can be rewritten in terms of turbulent 
kinetic energy 

- E - 1 2  
K - f l  

turbulent production 

P = -mao/az, 

E ,  = -t(s/P) p” l (aP la4  

fluctuating potential energy 

and buoyancy flux 

FB = ( g / P )  
as 

-aFB - - U - - N2(w2-Ep) ,  
ax 

where 

is the Brunt-Vaisala frequency and 

is the Cox number. 
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3.2. Exponential growth 
The approximate equation for the rate of change of turbulent kinetic energy (11)  is 
very similar to that used by Tavoularis (1985), which successfully described the 
exponential downstream development of turbulent kinetic energy in the asymptotic 
range of a non-stratified uniform-mean shear flow. It is therefore attractive to try to 
extend the analysis of Tavoularis to include dynamically active stable stratification. 
The assumptions made by Tavoularis were : two-dimensional, steady rectilinear 
mean velocity O(z) = i7+ ( a U / a z )  z ,  ( a u l a z )  = constant ; and statistical stationarity 
in the laboratory frame with Reynolds stresses and pressure-velocity covariances 
uniform in the transverse plane (y,z). (Note, as discussed in RIHV, Tavoularis' 
conclusions are independent of vertical homogeneity.) Neglecting the turbulent and 
viscous transport terms, which experimentally have been shown (TC, HGC) to be 
small, the approximate turbulent-kinetic-energy equation becomes 

For our similar but actively stratified experimental conditions, the buoyancy flux 
appears on the right-hand side of (15) to give (11) .  Introducing K,, = m / F ,  the 
turbulent diffusivities of momentum K ,  = m/(aa/az) and mass K,  = pw/(ap/az), 
and the gradient Richardson number Ri, ( 1 1 )  can be rewritten as: 

If K,,, e /P  and RiKz/K,  are independent of x or change very slowly with x, then 

where 7 = ( x / U )  (au/az) and 2 is a reference value of the turbulent kinetic energy at  
a location T = r, within the asymptotic region. I n  the limit as R, goes to  zero, (17) 
reduces to the exponentially growing solution of Tavoularis (1985). 

Whether or not K,,, e / P  and R,(K,/K,) have a sufficiently weak dependence on 
x cannot be conclusively established by the present measurements, but a strong x- 
dependence can be discounted. In practice R, can be maintained nearly constant 
throughout the course of the experiment. K J K ,  is known (Webster 1964) to remain 
constant for both passive and weakly active stratified flows. The computer 
simulations by Elghobashi, Gertz & Schumann (1985) for values of Ri = 0.01 and 0.1 
found the non-dimensional cross-correlations m/u 'w '  and Zlt'w' (they used 
temperature as their stratifying agent) to exhibit only small time variations in their 
asymptotic range. Finally, for R, < Ri,, i t  may be reasonable to assume that E/P 
remains nearly constant downstream, as it does for the corresponding unstratified 
case. It would be expected that s / P  should be smaller with the addition of stable 
stratification since now part of the energy supplied by P must be shared with 
( g / p ) p w  For the experiments presented here [ ( g / p ) p ] / P  was found to be less than 
0.1. 

Although (17) is only approximately correct, it offers a useful overview of the 
important parameters governing the development of the turbulent kinetic energy in 
a stratified uniform mean shear, From (17) we see that the behaviour of ;r" is strongly 
dependent on both Ri and 7 .  If Ri is large enough, then ( 1  - a / P  - R,(K,/K,)) will be 
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FIGURE 3. Evolution map for grid decaying stably stratified turbulence with 2L, + Lo initially 
(from SHV). 

negative and will decay exponentially regardless of 7. Otherwise, the effect of 
increasing R, is to reduce the rate a t  which the turbulence grows, and as R, + 0 the 
behaviour of the evolving turbulence approaches the unstratified case. 

3.3. Relevant lengthscales 
It is anticipated, in the present uniform-mean shear flows, that  buoyancy forces may 
have a similar influence on the behaviour of the turbulence as they had in the 
previous stratified uniform-mean velocity grid-flow experiments of SHV and IHV. It 
is useful, then, to review the lengthscale arguments used by SKV and IHV to 
describe the evolution of their stratified flows. 

While the size of the smallest turbulent scales are always limited by viscosity, in 
stably stratified decaying turbulent flows buoyancy forces also limit the size of the 
largest overturning scale. The measurements of SHV, for a stratified, grid-generated, 
decaying turbulence provide approximate limits for the range of act)ive turbulence. 
The scale of motion a t  which buoyancy forces become of the same order of magnitude 
as the inertial forces is known as the Ozmidov (Dougherty 1961 ; Ozmidov 1965) 
scale : 

Lo is proportional to the upper limit permissible for the scale of turbulent motions. 
The smallest turbulent lengthscales are characterized by the Kolmogorov scale : 

Lo = (e /N3)& (18) 

L, = (V3/E)4,  (19) 
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where the viscous and inertial forces are of the same order. SHV defined the 
overturning scale (in a statistical sense) of their flow as being equal to 2L,, where 

L, was first introduced by Ellison (1957) as a typical vertical distance travelled by 
fluid particles before either returning towards their equilibrium level or mixing. 

SHV obtained quantitative estimates for the dynamically significant relationship 
between the Ozmidov and Kolmogorov scales from measurements of density 
fluctuations and turbulent vertical mass flux. Their results suggest that active 
(overturning) turbulence will exist a t  those scales h for which 0.7L0 > h > 7.7Lk. 
Figure 3 shows a schematic map of the evolution of several lengthscales in the 
downstream direction. The map shows the regions of the flow and the nature of t,he 
fluid motions a t  various stages of decay from the initial classical grid turbulence to 
a final state thought to consist of quasi two-dimensional turbulence and nonlinear 
internal waves. 

4. Measurements 
Conditions for the first series of measurements were identical to those of SHV 

(same inlet configuration, stratifications and same measuring positions) except for the 
addition of a uniform mean shear. To establish a baseline for comparison with the 
stratified-shear experiments, measurements were initially made with no density 
gradient and are reported in RIHV. The development of the mean-square turbulent 
fluctuations (u’/U)’ and (w’lu)’ and the shear-stress correlation coefficient 
uw/(u’w’) essentially agreed with similar measurements of CHC a t  small development 
times 7 and with TC at  larger 7. The Taylor microscale was estimated using isotropic 
assumptions and the resulting variation with downstream position exhibited a linear 
growth region followed by an asymptotic approach to a constant value, also in 
agreement with previous measurements of CHC and TC. Finally the downstream 
growth of the integral lengthscale, as inferred from the one-dimensional energy 
spectra, was found to be consistent with that of CHC and TC. The measurements 
described herein were then made with a stable density stratification added to the 
shear. Data were predominantly taken over the central half of the test-section height 
where the vertical extent of the nearly constant mean velocity and density gradients 
remained larger than the evolving integral lengthscales. 

- 

4. I .  Evolution of turbulent velocities 
The downstream development of the non-dimensional longitudinal and vertical 
mean-square velocity fluctuations (u’lu)’ and (w‘lu)’ are shown in figures 4 ( a )  and 
5 ( a ) ,  respectively, for different stabilities Ri. For these experiments the inlet of SHV 
and IHV was in place. At small x / M  the turbulence is grid dominated regardless of 
the imposed shear or stratification, and the turbulent kinetic energy is observed to 
decay. However, a t  large x / M  the shear and buoyancy forces determine the 
characteristics of the turbulence. The growth rates of (u’lu)’ and (w’/U)2 with 
stratification can be dramatically less than the corresponding unstratified-flow 
growth rates, and for large enough stabilities ( Ri), the turbulent intensities are 
observed to decay. As the stability of the flow decreases, the growth rates approach 
the passive-scalar case and the limiting behaviour of the non-dimensional correlation 



86 J .  J .  Rohr, E.  C. Itsweire, K .  N .  Helland and C. W .  Van  Atta 

0.010 

0.008 

0.006 

0.004 

0.002 

0 30 60 90 120 

x l M  

0.006 

0.004 

0.002 

0 0.1 0.2 0.3 0.4 0.5 

4 
FIQURE 4. (a) Downstream development of streamwise turbulent kinetic energy with x / M  (M = 
1.905 cm). 0, R, x 0.36; A, R, x 0.18; 0, R, x 0.06; V, R, % 0.02; 0 ,  R, = 0. ( b )  Dependence of 
streamwise turbulent kinetic energy on stability R,. Symbols as defined in (a). Solid symbols were 
taken close to the inlet and are consequently influenced by the decaying grid turbulence produced 
there. -, T x 10.1 ; ---, T x 5.3. 

coefficients mlu’w‘ ,  pwlp’w’ and p / p ’ u ‘  is found to be consistent with the passive- 
scalar measurements of TC. 

The normalized turbulent kinetic energies (w’/17)2 and (u‘/Q2 of figures 4 ( a )  and 
5 ( a )  are plotted us. the local gradient Richardson number R, in figures 4 (b )  and 5 ( b ) ,  
respectively. Measurements close to the inlet (included in figure 4 ( a )  for comparison) 
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FIGURE 5. Dependence of vertical turbulent kinetic energy on s / M  (M = 1.905 em) in ( a )  and 
stability R, in (b) .  In ( b )  measurements influenced by the inlet have been omitted, 0, Ri x 0.36; 
A, Ri x 0.18; 0, R, x 0.06; ‘V Rz x 0.02; 0,  R, = 0. 

are contaminated by the decaying turbulence associated with it. Initially the 
production term P = -m/(aa/az) is very small because near the inlet the velocity 
fluctuations are uncorrelated (uw - 0), and small r: corresponds to small development 
time 7. A certain amount of flow development time (7 > 4, see RIHV) is required 
before the interaction between the mean shear and turbulence dominates the flow. 
Indiscriminate comparison of data taken a t  small 7 (upstream of the shear- 
dominated region) with data taken at large r (in the shear-dominated region) may 
thus have led to the difficulties in interpreting Webster’s earlier work (1964) as 
discussed in $1.  However, Webster’s measurements of ( ~ ’ / d ) ~  21s. Ri (0.05 < Ri < 0.3) 
in the region uninfluenced by the inlet are similar to those illustrated in figure 
5 ( b ) .  Although Webster (1964) could not obtain reliable data a t  smaller Ri because 
of background temperature fluctuations, he anticipated the (w’/U)’ dependence on 
small Ri found in figure 5(b). No ( u ’ / U ) ~  v.s. Ri measurements were reported by 
Webster to compare with the corresponding values of figure 4 ( b ) .  

The gradient Richardson number for the largest stratifications (in figures 4-7) 
varied monotonically between 0.39 and 0.36 with increasing x / M ,  and nowhere was 
the turbulent energy observed to grow. The remaining stratifications all produced 
gradient Richardson numbers less than 0.21, and downstream of the region 
influenced by the grid the turbulent intensities grow at a rate that increases with 
decreasing stratification. The Miles (1961) criterion for stability of an inviscid, 
laminar, continuously stratified flow to infinitesimal disturbances requires a gradient 
Richardson number greater than 0.25. Although this value is consistent with the 
present data, the Miles criterion cannot be strictly applied since the grid at the inlet 
creates finite disturbances (i.e. turbulent flow) not amenable to a linear stability 
analysis. For nonlinear stability (Abarbanel et al. 1984) of parallel laminar shear flow 
in 8 three-dimensional stratified fluid the necessary and sufficient condition for 
formal stability everywhere in the flow is 
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FIGURE 6. Normalized turbulent Prandtl number (Prt)  as a function of R,. -, Launder’s (1975) 
predictions ; *, Elghobashi et nl’s (1985) numerical calculations; A, 0, Wehster’s (1964) 
measurements at two stations; 0 ,  present data. 

For the present laboratory flows in which the turbulence develops in density and 
velocity fields with nearly constant gradients, NRt(z) = R,. 

If the non-dimensional quantities -m/q2, e / P  and K,/Km (which are always 
positive) approach nearly constant values as the turbulence grows downstream, 
independent of Ri (for Ri < Ricr), then Ric, can be estimated from (17) by setting 
1 - c / P -  Ri(K,/Km) = 0. Smaller values of Ri will guarantee a positive exponent and 
consequently an increase in with increasing 7. Unfortunately neither -m/q2, 
e / P  nor K J K ,  have been adequately determined, and furthermore they probably 
depend on Ri, although this dependence may be weak for small Ri (i.e. Ri < Ricr). The 
values of -m/q2 and c/P for growing turbulent shear flows without active 
stratification are 0.155 k 0.015 and 0.645 k 0.075 respectively (see Karnik & 
Tavoularis 1983). For both weakly active (Ri < 0.01) and passively stratified shear 
flows K J K ,  is found to be around 1.35 (Webster 1964). In  figure 6 the turbulent 
Prandtl number (Prt = [KZ/Km]-’) ,  normalized by its value for non-stratified flows 
Pro = 0.63, is plotted as a function of Ri for both Webster’s and the present data. Also 
included are the modelling predictions by Launder (1975) and the numerical 
simulations of Elghobashi et al. (1985). The measurements in figure 6 suggest that  for 
Ri < Ric,, P,., may not be strongly dependent on Ri. The large spread in the 
experimental data results from the uncertainty in measuring uw and pw. The 
following values are a representative average (individual values may differ by as 
much as 50% between experiments) of the present data obtained far from the 
inlet : 

- 
Kz - 1.4. uw 6 _- N - 0.16, - ~ 0 . 6 ,  -- 

q2 P K m  

Together with (17) these values estimate Ric, to  be about 0.29, reasonably close to the 
experimental estimate of Ric, = 0.25 & 0.05. 



Turbulence in a stably strati$ed shear flow 

1’3 1 
89 

0.7 O ’ I l j  

P (cmz/s3) 

i 

0 0.1 0.2 0.3 0.4 

FIGURE 7 .  Dependence of turbulent kinetic-energy production (P = -m(ao/az)) on stability R,. 
Symbols as defined in figure 4(a ) .  For each symbol, higher values of P correspond to larger 
development times T .  

In  figure 7 the production term, P = -uw(ao/az), is plotted as a function of R,. 
Only measurements for x / M  beyond the influence of the inlet are included. Even 
with the relatively greater variance in measuring UW, the overall dependence of P on 
Ri is clear. The decrease of the correlation between the longitudinal and vertical 
velocity fluctuations with increasing R, is the principal reason for the decrease in the 
growth rate of turbulent kinetic energy with increasing R,. As shown by SHV, stable 
stratifications primarily suppress the larger overturning scales of the turbulence. It 
is these scales that  make the biggest contribution to UW. 

Excluding those measurements dominated by the turbulence produced by the 
inlet, the question remains as to whether the turbulent kinetic energy is determined 
by Ri alone. It has been argued in $3.2 that developing turbulence in a stratified, 
uniform mean shear should depend strongly on both R, and 7 .  When (u’/U)2, 
(w’ /D)2 ,  and -uw(aO/az) are plotted us. R, (figures 4 b ,  5 b  and 7 ) ,  they show a clear 
overall decrease with increasing Ri. When in figure 4 (6) the corresponding 7-values 
are indicated some 7-dependence is also evident when R, < Ric,. It is found, as 
predicted by (17) ,  that for a fixed evolution time 7 the longitudinal kinetic energy 
decreases with R,, while for nearly constant R,, ur2 /U2  increases with larger 7 .  Similar 
results were found for the vertical kinetic energy. 

To ascertain whether the behaviour observed in figures 4-7 persists for longer flow 
development times i t  was necessary to rebuild and modify the water-channel inlet 
such that a uniform mean shear could be successfully maintained significantly 
further downstream. Achieving this also resulted in reducing the rate of decay of the 
density profile. The effective length over which useful measurements could be taken 
was more than doubled, corresponding to maximum development times of NN 25. 
The ( W ‘ / O ) ~  measurements are shown in figure 8 ( a ) .  Clearly, the dependence on 
x / M  exhibited in figure 5(a)  is preserved further downst’ream. For the case in 
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FIGURE 8. Downstream development (with diffuser) of vertical turbulent kinetic energy with (a) 
x / M  ( M  = 1.524 cm) and ( b )  R,. 0 ,  R, ( -  0.26f0.03) > RCcr; A, R, x 0.04; ., R, x 0.02. For each 
symbol, higher values of (w'/U)' correspond to larger development times 7 .  

figure 8 ( a )  for which (w' lu) '  is observed to monotonically decay, Ri is estimated 
to be about 0.26. It should be noted that because the velocity profile, in this par- 
ticular instance, developed a kink midway in its height (at  the measuring position), 
there was a 15% uncertainty associated with estimating Ri. 

Plotting the same values of (w'/U)' from figure 8 ( a )  'us. Ri in figure 8 ( b ) ,  it  becomes 
apparent that I- can be as important a parameter as R, in determining the growth of 
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the turbulent kinetic energy. Similar behaviour is observed for both ( u ' / U ) z  and 

Figures 9(a) and 9(b) contrast, for decaying and growing turbulence in stratified 
shear flows, the downstream development of the principal terms acting as sources 
and sinks of turbulent kinetic energy (equation (11 ) ) .  The buoyancy flux (g /p )pw is 
observed to act only as a weak sink even when Ri < Ric,. The dissipation (c)t  always 
decreases immediately behind the grid, but for Ri < Ric, it grows (note that for 
clarity --E is plotted in figure 9) further downstream with the increasing turbulence 
intensity. The production term -m(aO/az) is observed to respond strongly to the 
presence of the mean shear only when R, < Rdc,. 

- m(ar;i/az). 

4.2. Evolution of lengthscales 
The present experiments can be used to determine whether the SHV and IHV 
lengthscale analysis is applicable to stably stratified, uniform-mean shear flows. 
When R, > Ria, the coefficients of Lo and L, which delineate the range of overturning 
lengthscales (see $3.3) can be determined using the same procedures as SHV. This is 
accomplished by measuring the ratio LJL, a t  the point where the growth of L, first 
deviates from the curve describing a passive growth (Montgomery 1974), and 
measuring the ratio Lo/Lk a t  the estimated point where p first goes to zero. These 
transition points are found to exist only when R, > R,,,, i.e. when the turbulence 

t The isotropic relation E = v[10(au/ar)2+2.5(aw/as)2] has been used, where (aulaz)' and 
(i3w/az)2 are calculated by integrating k2 times the one-dimensional energy spectra of E,&,,(k) and 
E,,(k)Lrespectkely. TC had found for uniform mean shear flows that E x 8 . 5 ~ ( q ~ / u ' ~ )  (au/az)2 or 
since q2 o 1 . 8 9 ~ ' ~ ,  E x 16.07v(a~/az)~. They also found that (aw/az)2 e 2 . 6 ( 3 u / a ~ ) ~  so that the 
isotropic relation for the dissipation can be rewritten as E x 16.5v(CIu/a~)~, which is close to TC's 
estimate for the uniform-mean-shear case. 

4 FL>l I95 
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decays. When R, < Ric,, L, is observed to continually grow and pw never decreases 
to zero (disregarding the trivial case where ap/az goes to zero). 

For the two decaying-shear cases studied (with the same inlet grid as SWV 
and IHV), it is found that the range of overturning scales is approximately 
l . lLo  > h > 8.8L,, very close to the similarly stratified but unsheared measurements 
of SHV and IHV. In figure 10 the behaviour of L, for Ri < Ric, is contrasted with 
that for Ri > Ric,. Also included in figure 10 for comparison are Montgomery’s? 
and SHV’s measurements. The remarkable similarity between the shear data when 
Ri > Ric, and the SHV data suggests that when Ri > Ric, the shear may only margin- 
ally influence the development of L,. 

For the decaying turbulence (R, > Ricr), uniform-mean shear-flow data it is 
found that, when Lo z SL,, all overturning scales have been eEectively suppressed 
(pw = 0) owing to the combined effect of buoyancy and viscosity. By substituting the 
definitions of Lo and L, into Lo = SL, the transition dissipation rate etr is calculated 
to be equal to 16vN2, close to the unsheared case value of 15vN2 (IHV, 1986). In the 
region beyond the influence of the grid, i t  is observed that for Ri > 0.3, e < etr and 
the turbulence decays, while for Ri < 0.2, E > etr and the turbulence grows. Therefore, 
the simple e-criterion for the existence of turbulence is applicable both to sheared and 
unsheared decaying turbulence. Figure 11 plots e vus. vN2 for the present data as well 
as the SHV data. As shown for either data set, the boundary e = 16vN2 serves well 
in separating the overturning and non-overturning domains. For smaller Ri ,  as 
the shear becomes a more effective source for turbulence, E can grow much larger 
than etr. 

SHV found that for grid-generated, decaying, stably stratified turbulence, if the 

t Montgomery’s data was normalized by the ratio of his grid mesh size to that used in the water 
channel since the mesh size induces an initial lengthscale to the turbulence. 
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FIGURE 1 1 .  Transition boundary between turbulent and non-turbulent domains. -, etr = 16vN2; 
A, SHV unsheared data, pw > 0;  A, SHV unsheared data, ,iKO - 0 ;  0, present sheared data, 
pw > 0 ;  0 ,  present sheared data, pw - 0. The arrows indicate increasing distance from the 
grid. 

density gradient is strong enough, the turbulence is suppressed so quickly that 
incomplete scalar mixing occurs. This results in restratification as evidenced by a 
negative buoyancy flux ( ( g / p )  p ~ ) .  Since the initial separation distance between the 
turbulent (L,) and buoyancy limiting (Lo)  lengthscales is related (in decaying 
turbulence) to the persistence time of the turbulence, a restratification criterion can 
be based on the initial ratio L,/L,. From their measurements, SHV estimated initial 
values of L,/L, < 0.15, as their upper bound for the criterion for complete mixing 
(where the lengthscales were measured a t  x / M  = 10). With the addition of a uniform 
mean shear it is found that, if Ri < Ric, restratification is never observed. However, 
for the case Ri > Rtcr the SHV criterion is still found to work reasonably well. Komori 
et ab. (1983) also found restratification occurring (their figure 7) for local gradient 
Richardson numbers near 0.25 and greater in their stably (temperature) stratified 
shear flows. 

In  a mixing layer composed of two parallel streams of water having different 
densities, Koop & Browand (1979) have studied the major features of the turbulence 
produced. They found (for global Richardson numbers Rio < 0.15) that a stably 
stratified density difference, no matter how small, acts ultimately to collapse and 
relaminarize the turbulence. Preceding this downstream location where restrati- 
fication begins, Koop & Browand (1979) observed a turbulent growth region 
characterized by large quasi-organized vortical structures, familiar to unstratified- 
mixing-layer studies. Although in many ways mixing layers and the present uniform 
mean shear flow are inherently different, e.g. global Richardson numbers and 
gradient Richardson numbers cannot be unambiguously compared, we found some 
general similarities worth mentioning. In  both flows, providing that the mean shear 
can sustain growing turbulent lengthscales, no restratification is observed. Because 
for the present measurements the turbulent lengthscale L, remains sufficiently 

4-2 
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smaller than the extent of the linear mean velocity profile, if L, begins to grow 
(R, < Rso) it will continue to. When R, > Rlcr, however, the flow stability is too great 
for the mean shear to initiate the growth of L,. Koop & Browand (1979) also notice 
that at larger stabilities (Rt0 > 0.15) a different sequence occurs, the flow is no longer 
characterized by large vortices but by interfacial waves. Although the prevalence of 
internal waves in the present facility has been found (IHV) to depend in part on the 
inlet configuration, for the stratified uniform mean shear flows investigated, only if 
R, > Rrcr were internal waves clearly observed in the vertical turbulent velocity 
spectra (Rohr 1985). 
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FIGURE 12. Evolution map for growing turbulence in a stably stratified uniform mean shear with 
L, < Lo initially and (a) R, - 0.2q > RScr;  ( b )  R, - 0.04 < Rtcr; (c) R, - 0.02 < Rficr. 0 = 1.4(e/N3)i; 
n = 2p’/(ap/az); cl = i5.4(v3/+. 

In  figure 12(a)  an SHV lengthscale evolution ‘map’ is drawn for the case 
R, > Ric,. This ‘map’ extends much farther downstream ( x / M  = 260 compared 
with 100 for SHV - see figure 3), but the underlying features are the same. 
For R, < R,,, the previous lengthscale ‘ map ’ of SHV changes dramatically. In  figure 
12(b) for Ri = 0.04 it is observed that beyond the immediate influence of the grid 
( x / M  > 60) both L, and Lo grow, with Lo growing the fastest. Thus, for the case of 
shear-generated growing stratified turbulence, the growth rate of Lo appears to 
determine the growth rate of the turbulent scale L, as it did in the stratified uniform 
mean flows of SHV and IHV. In the same region of the flow L, decreases since e 
increases with the growing turbulence. Therefore, the range of overturning scales 
increases downstream. As shown in figure 12 (c), reducing the stability further 
(R, = 0.02) results in increasing both the rates of growth of Lo and L, and the 
separation between Lo, L,and L,. 

In  a stably stratified flow, as the overturning scale increases so must the influence 
of stabilizing buoyancy forces. Without some compensating input benefiting inertial 
forces, the growth of the vertical scales must eventually be limited. This is evidenced 
in the vertical growth limitations of wakes (Lin & Pao 1979), mixing layers (Koop 
& Browand 1979) and intrusions (Ivey & Corcos 1982) in stably stratified flows. 
However, the effect of stable stratification in a uniform mean shear flow when 
Ri < R,,, does not limit the absolute size of the largest overturning lengthscale. 
Instead its effect is to reduce the growth rate of the turbulent lengthscales (L, and Lo) 
from their unstratified rates of growth. The downstream growth of L, is not 
arrested by the increasing influence of stabilizing buoyancy forces because the favour- 
able interaction between the overturning scales and the mean shear also increases 
with L,. As previously mentioned, when R, 2 Ric, the lengthscales do not continue to 
grow but evolve similarly to the results of SHV for their corresponding unsheared 
case. 
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FIGURE 14. Downstream development of the ratio of observed overturning (L , )  to buoyancy 

limiting (Lo) scales. -, L, of SHV for N = 0.96. Symbols same as in figure 4. 

Figure 13 shows some of the accompanying values of L, and R, for the data of 
figure 4 ( a )  a t  measuring positions beyond the influence of the inlet. As in figures 4 ( b )  
and 8(b)  for the turbulent intensities, L, shows a strong dependence on 7. At constant 
7, L, exhibits a dependence on Ri similar to that found by Webster (1964, figure 15) 
for his measurements uninfluenced by the inlet. For Webster’s measurements r 
was approximately constant because, at a fixed position, r can only vary with 
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(1 /U)  (aa/az). The shear-generating grid of Owen & Zienkiewicz (1957) used by 
Webster produces only constant values of (1/U) ( a u l a z ) .  The mean shear and 
centreline velocity can be varied independently by using either a shear generator 
consisting of separate channels, each filled with a series of interchangeable screens to 
produce the necessary pressure drop (Karnik & Tavoularis 1987), or as in the present 
experiments, simply driving each layer separately. 

In SHV's experiment the overturning scale L,, owing to buoyancy effects, 
eventually 'locks in '  on the decaying buoyancy scale Lo and remains nearly 
proportional to it. With the addition of a uniform mean shear it is found that the 
ratio of L,/L, is strongly dependent on Ri. This is illustrated in figure 14, where the 
corresponding values of L,/L, for measurements taken with the same SHV inlet 
(figures 4-7) are plotted us. x / M .  It is seen that L,/L, increases with increasing flow 
stability, until R, > Rto, where i t  approaches the value of SHV's unsheared 
measurements. 

The downstream behaviour of LJL, for both decaying (Rohr, Itsweire & Van Atta 
1984) and growing (Rohr & Van Atta 1987) turbulent flows has been found to be 
related to  the mixing efficiency of the flow. It has been found that if the largest 
lengthscale of the flow is still overturning (as is guaranteed if R, < Ria) then both the 
mixing efficiency and LJL, grow with stability Ri. This result is in agreement with 
the experimental evidence that collapsing Kelvin--Helmholtz instabilities and 
breaking internal waves produce the highest observed mixing efficiencies (Linden 
1979). Figure 15 shows a compilation of LJL,  in the shear-dominated region as a 
function of Ri for all the present stably stratified-shear experiments. Also included 
are the higher-Ri experiments of Stillinger (1981) as well as the extremely low-R, 
(passively stratified) experiments of TC. The degree of collapse of all the data 
to a single curve is extraordinarily good. The break in the LJL,  us. Ri curve 
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a t  Ric, ( x 0.25) is consistent with the observation (figures 4a and 5a) that  near 
R, z 0.25 there is an abrupt change in the turbulence evolution i.e. for R, < 0.25 
the turbulence grows while for R, 0.25 the turbulence decays. 

5. Spectral measurements 
Figures 16-19 show the effects of different stable stratifications on the evolving 

one-dimensional energy spectra. When the gradient Richardson number R, is less 
than the critical value Ric,, turbulent fluctuations are observed to increase 
downstream. The associated EUu( f ) spectral evolution for large flow development 
times 7 is illust,rated in figure 16 for values of x / M  equal to 80, 130 and 230 (or 7 of 
7.4, 11.8 and 18.0 respectively). Except for their slower evolution owing to the effects 
of stratification, these developing spectral shapes resemble those of the unstratified 
shear case (RIHV). The effects of stratification can be better observed in figure 17 
where the E,,(f) spectra are plotted for different stabilities a t  nearly the same value 
of 7 .  The collapse of these spectra is good when non-dimensionalized by the respective 
Kolmogorov length and velocity scales, as shown in figure 18. Comparing the 
dimensional and Kolmogorov normalized spectra of the unstratified shear flows 
(RIHV, their figures 13-16) with the stratified shear flows (figures 17 and 18a; 
R, < Ricr), it appears that the development of the spectra is much the same with 
either increasing 7 (RIHV) or decreasing stratification. 

The data represented by the solid circles in figure 18(a )  were derived from TC’s 
uniform shear spectrum. These data were taken a t  x / H  = 10.5 and normalized by the 
appropriate E-  and v-values listed in table 4 of TC. TC’s measurements were taken in 
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FIGURE 18. (a) Pjormalized one-dimensional turbulent streamwise velocity spectra. (b )  
Kormalized one-dimensional turbulent vertical velocity spectra. 
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FIGURE 19. ( a )  Downstream development of one-dimensional spectra of the streamwise turbulent 
velocity, R, > Rfcr. ( b )  Normalized one-dimensional turbulent streamwise velocity spectra for 
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a wind tunnel with a mean velocity gradient of 46.8 s-l and centreline velocity of 
1240 cm/s. Their temperature gradient aT/ax was small enough to consider 
temperature as a passive scalar. The turbulent Reynolds number (u’hlv) was 160. 
The square symbols represent a composite of the Kolmogorov-scaled spectra 
appearing in Grant, Stewart & Moilliet (1962, hereinafter referred to as GSM). The 
higher non-dimensional wavenumber part of this spectrum is deleted because of 
instrumentation noise problems (see GSM). The square symbols in figure 18(a) are 
connected by a line of slope -5. This is possibly the most convincing data 
corroborating Kolmogorov’s inertial-subrange universal similarity hypotheses. The 
Reynolds number of these oceanic measurements based on the mean flow and depth 
of the tidal channel is around los. The data in figure 18(a) denoted by the solid 
triangles represent measurements of unstratified decaying grid turbulence taken in 
a wind tunnel by Helland, Lii & Rosenblatt (1977). Their grid Reynolds number 
( U M / v )  is about 26000 while the turbulent Reynolds number is around 35 and 
independent of downstream evolution. For the stratified uniform mean shear data 
presented in figure 18 (a ,  b )  the grid Reynolds number is 3000 whereas the turbulent 
Reynolds number ranges from about 100 to 200, increasing downstream. The 
tendency for the present stratified-shear spectra to approach the universal-inertial- 
subrange spectrum is apparent as the Richardson number approaches zero. In  
figure 18 (b )  are some of the corresponding normalized vertical turbulent velocity 
spectra. The effect of the uniform mean shear on spectral growth (R, < R,,,) is less 
pronounced than the preceding case (figure 18a) as expected from (1) and (3). Only 
in (1) for the streamwise component of the fluctuating kinetic energy does a shear 
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FIQURE 20. Downstream development of u, w variance-preserving cospectra 
for Ri = 0 and Ri > Rie,. 

production term appear explicitly, whereas the damping effect due to  stable stratifi- 
cation first effects the vertical component (3). 

When the stability of the flow is large enough to suppress the turbulence, i.e. 
Ri > Ric,, the area under consecutive downstream E,, spectra decreases (see 
figure 19a) as it must since u" is now decaying. What is a little surprising is how this 
net decrease is distributed in frequency. The energy a t  low frequency is not observed 
to decay as does the energy a t  the high-frequency end of the spectra. This is 
reminiscent of what SHV and IHV had found in their studies of stably stratified grid 
decaying turbulence in a uniform mean flow. They attributed this phenomenon to 
the generation of internal waves. The existence of background internal waves in 
these particular data sets is also likely since both experiments have the same inlet 
conditions, and when R, > RZc,, the shear production term is negligible compared to 
e.  The corresponding one-dimensional spectra of the vertical turbulent velocity 
(Ri  > R, ) are also similar to what SHV and IHV found (for the same inlet 
conditions), i.e. a conspicuous spectral rise a t  the low frequencies which persists 
downstream. With Kolmogorov scaling, the spectra of figure 19 (a) can be compared 
to the spectra of Helland et al. which, as previously discussed, were taken from 
measurements of unstratified grid turbulence. The similarity between the spectra in 
figure 19(b) further supports the notion that when Ri > Ric, the influence of the 
uniform mean shear on the dynamics of the flow is small. 

The cospectrum E,, measures the contribution of various frequencies to the 
covariance UW, which appears in the turbulent-kinetic-energy equation as the source 
term -uw(ao/az)  and with opposite sign in the energy equation for the mean flow 
kinetic energy. The term - W ( a U / a z )  is crucial to turbulent production through the 

cr 
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FIGURE 21. u, w variance-preserving cospectra for nearly constant 7 ( - 8) and varying Ri. 

exchange of kinetic energy between the mean flow and the turbulence, with the 
turbulence normally profitting. In  presenting the spectral form of it is convenient 
to plot - fE,,( f )  vus. log f since this produces a positive covariance-preserving version 
of the spectra. A plot of - fE,,( f )  'us. log f will give equally weighted contributions 
to the covariance from any portion of the plotted spectra. A similar representation 
is also used for the cospectrum Epw. Figures 2@22 are presented in this fashion. It 
should be noted that measuring UW will require significantly longer (see Lumley & 
Panofsky 1964) averaging times than 2 and 2, for the same relative accuracy. As 
previously discussed, owing to  limited averaging time, the covariance spectra for 
both uw and pw provide only qualitative information of general trends. The 
smoothed spectra were obtained by averaging neighbouring frequency bands. 

Figures 20 and 21 compare the downstream evolution of the uw-cospectra for flows 
with Ri = 0, Ri < Ric,, and Ri > Ric,. I n  the case where Ri < Ria, the absolute 
values of the uw-cospectra grow downstream, consistent with the increasing 
turbulence intensities. The lower frequencies are observed to be the largest 
contributors to uw and as the turbulence evolves downstream this contribution shifts 
towards even lower frequencies. This is believed to reflect the connection between 
uw and the growing integral lengthscales. The larger the average overturning eddy 
scale grows, because of the superimposed mean velocity gradient, the larger the 
streamwise fluctuations it will transport, increasing UW. At high frequencies the 
contribution to the correlation between u and w is found to be essentially zero, as 
is implied by the hypothesis of local isotropy and first verified by Corrsin (1951). 
The argument for expecting isotropy a t  small scales, despite the presence of a mean 
shear, is that the strain field containing the smallest scales is not determined by 
the mean strain but by the turbulence. The ratio of the mean to turbulent strain, 
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( a u / a z ) / ( s / v ) i ,  for the growing unstratified flow of figure 20 is about 0.14. When 
the stratification is strong enough so that the turbulence decays, cospectral 
contributions to ~BD are found to be much smaller at all frequencies, in agreement 
with the observation that the largest lengthscales are now observed to decay. In 
figure 21 the uw-cospectra are plotted for the full range of gradient Richardson 
numbers. Here the measurements were taken at nearly constant 7 in order to isolate 
the effects of the changing stratification. It is clear that increasing stratification 
increasingly inhibits t'he vertical turbulent momentum transport (puw). 

A parallel comparison can be made for the cospectra E,, of the covariance of the 
density and vertical velocity fluctuations, p ~ .  This quantity appears in the term 
-pw(ap/az), which acts as a source in the conservation equation for the mean-square 
concentration fluctuation. As suggested by Stewart (1969), SHV used the correlation 
pw as a diagnostic tool to distinguish turbulence from internal waves. The vertical 
mass flux is zero for linear internal waves because density and vertical velocity 
fluctuations are 90" out of phase. 

As is shown in figure 22 when Ri > Ria, E,, becomes significantly smaller than the 
value of E,, for 0 < Ri < Ric,. The large negative excursions reflect a change in 
the sign of pw indicating counter-gradient mixing, i.e. restratification. In  figure 22 the 
negative peak in E,, is observed a t  relatively low frequencies indicative of larger 
scales. The smaller scales have presumably become better mixed. It should be noted, 
however, in some of the data sets with R, > Ricr taken closer to the grid, substantial 
regions of negative E,, were observed at the higher frequencies and hence smaller 
scales. 

Kolmogorov's universal similarity hypotheses for the turbulent velocity field may 
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FIGURE 23. ( a )  Downstream development of one-dimensional spectra of density fluctuations for 
0 < Ri < Ri r .  High frequencies affected by resolution of probe. ( b )  Normalized one-dimensional 
spectra of density fluctuations for o < R~ < R,,,. 

be extended to predict the statistical structure of conserved dynamically passive 
scalar fields which are mixed by the turbulence. Arguments which parallel the first 
similarity hypothesis lead to predictions (Batchelor 1959 ; Gibson 1968) about the 
high-wavenumber regions of the scalar spectra (viscous-convective and diffusive 
ranges). Unfortunately, most of these wavenumbers lie outside the spatial resolution 
of the conductivity probe (Head 1983). The result of extending Kolmogorov's second 
similarity hypothesis, which is valid only for high Reynolds number, predicts a 
universal scalar inertial subrange when E,(k) c i / (xvi)  is plotted us. EL,. x is the rate 
of destruction of by the molecular smearing of density fluctuations. Corrsin (1951) 
and Obukhoff (1949) independently predicted the existence of this range of E where 
E,(k) is proportional to k-e. As seen from the previous velocity spectra, the turbulent 
Reynolds number is not quite high enough to produce a broad inertial subrange. 
Nevertheless, there exists an intermediate range of wavenumbers comprising 
the viscous subrange, which may be compared using the same scaled values 
Ep6,(k) eg/(xvi) and kL,. 

Figure 23(a) shows the downstream evolution of the scalar spectra E J k )  in an 
actively stratified (Ri < R,,,) uniform mean shear flow. The high-wavenumber ends 
of the spectra are clearly attenuated by the resolution of the probe. As the influence 
of the mean shear extends over longer times, Epp(k) appears to remain proportional 
to as seen a t  x / M  positions of 80 to 280. This is consistent with the fact that the 
viscous subrange (see Gibson & Schwarz 1963), lies between the k-9 (inertial) and 
k-l (viscous-convective) subrange. If the corresponding slopes for the passive mixing 
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for Ri > R6cr. 
FIGURE 24. Downstream development of one-dimensional spectra of density fluctuations 

spectra of Gibson & Schwarz (1963) and TC are calculated, then power laws of 
and k-1.21 are found, respectively. 

The Batchelor scaling requires that x be known. The limited spatial resolution of 
the conductivity probe, however, prevents direct measurements of x. IHV estimated 
x from the equation for density fluctuations, (9), which can be rewritten as 

The last term on the right-hand side of (22) was measured directly. The preceding 
term was estimated from a curve fit to measured at  successive downstream 
positions spaced 20 cm apart. For the uniform-mean shear flows, for which 
measurements were extended much further downstream, the measuring position 
intervals were spaced farther apart which discouraged estimating the spatial 
derivative of p” with a procedure similar to IHV. Fortunately, there were some 
instances where p” remained nearly constant, thereby allowing x to be estimated 
simply as - 2pw( ap/az) .  

The best estimates available for x were from downstream measurements, x / M  = 

155-280 for Ri z 0.04, where p“ varied only a few percent over this entire range. 
Figure 23 ( b )  shows the results of applying the Batchelor scaling to these data. Also 
included in figure 23 ( b )  are the averages of the Gibson & Schwarz (1963) normalized 
scalar spectra; they generated their data in a closed-loop water tunnel, in which a 
biplane grid that generated the velocity field also created passive-scalar fields by 



106 J .  J .  Rohr, E .  C. Itsweire, K .  N .  Helland and C. W .  Van Atta 

10-8 

10-8 

10-1 1 oo 10' 10-3 10-2  10-1 100 

k kLk 

FIGURE 25. (a) One-dimensional spectra of density fluctuations. ( b )  Normalized one-dimensional 
spectra of density fluctuations. 

injecting concentrated or heated salt solution through small holes drilled in the grid. 
The grid Reynolds number ranged from 11 700 to 65 550. 

Figure 24 shows the evolution of E,,(k) when Ri > Ric, and p' decreases 
monotonically downstream. The behaviour of the evolving E,(,!k)-spectra is similar 
to those found for decaying stratified grid turbulence in a uniform-mean velocity 
field. Again, a t  high frequencies the scalar spectrum is beyond the resolution of the 
conductivity probe. 

IHV have shown that for decaying stratified grid-generated turbulence, the 
Batchelor scaling failed to  collapse E,,(k)-spectra taken a t  fixed positions far 
downstream of the grid but at different density gradients. However, when the 
Batchelor scaling was applied to  either the XHV or IHV measurements taken close 
to the grid, a good collapse can be achieved. A good collapse close to the grid is not 
surprising since the Batchelor scaling is expected to work for a passive scalar and not 
for a strongly active scalar field. SHV had shown that for grid-generated turbulence 
in an actively stratified uniform mean flow, buoyancy forces are relatively small 
compared with inertial forces close to the grid where Lo > L,. In  the stratified 
uniform mean shear flow, where R, c Ric, and a t  large r ,  LJL,  can become 
significantly greater than one, indicating that the Batchelor scaling may be 
appropriate. Figure 25 (a, b )  demonstrates how well the Batchelor scaling collapses 
two different stratified shear flows where R, < Rrcr, and r are nearly the same. As 
discussed above, the comparison is restricted to  regions of the flow where 2 was 
approximately constant I 

Obviously, higher-Reynolds-number turbulent flows, better estimates of x, and 
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more data a t  various stratifications and mean velocity gradients are needed to  
pursue this study further. Such studies to resolve the applicability of Batchelor 
scaling are further motivated by the recent high-Reynolds-number tidal-channel 
temperature measurements of Gargett (1985), which prompted her heretical remark 
that ‘observations suggest that the Corrsin-Obukhov-Batchelor theory does not 
provide a universal description of the spectrum of temperature fluctuations in water ’. 

6. Comparison with and interpretation of oceanic microstructure 
measurements 

There is naturally debate among oceanographers on how the study of laboratory 
turbulence can be of service towards the interpretation of oceanic microstructure 
(Caldwell 1983). A frequent argument made against such comparisons is that the 
unknown energy sources of the ocean might be quite different from the known and 
well-controlled energy sources of the laboratory. The approach taken here is to  
investigate various energy sources for turbulence in laboratory stratified flows, 
thereby increasing the possible comparisons that can be made with geophysical field 
measurements. 

Some of the conclusions from the experiments of SHV are beginning to be applied 
in the oceanographic literature. Gregg (1984) notes that SHV’s dissipation criteria 
for the extinction of turbulence is consistent with his own oceanic measurements. 
Gargett, Osborn & Nasmyth (1984), in their investigation of tidal flows over an 
estuary sill, used SHV’s data to infer whether their unmeasured mass flux was non- 
zero. However, i t  is not known whether SHV’s scenario describing the evolution of 
decaying grid turbulence into internal waves is generally applicable to oceanic 
turbulence, whose generation process is largely unidentified and highly variable in 
space and time. Gregg (1984) has suggested that further laboratory criteria be 
obtained, similar to those of SHV, but for stratified shear flows, and the present 
results furnish such criteria. 

The value of the present uniform mean shear measurements for interpreting 
oceanic data will take some time to assess. Nevertheless, there are trends found in the 
laboratory data that encourage comparison with past field measurements. Oceanic 
microstructure lengthscale observations are commonly expressed in terms of the 
Thorpe scale L,, defined as the root mean square of the Thorpe displacements (see 
Thorpe 1977). These displacements are the vertical distances individual fluid 
particles would have to be moved to  generate a monotonic stable density profile from 
the observed instantaneous density profile. In  the absence of internal waves or after 
removing their influence from the data, LT and L, = p’/(ap/az) are believed to be 
equivalent (see Caldwell 1983 ; Itsweire 1984). 

Figure 26(a) compares the overturning scale observed (LT or L,) with the largest 
possible vertical lengthscale allowed by buoyancy (Lo) for the present and SHV 
laboratory data, and the wind-driven mixed-layer data of Dillon (1984. Series A, 
B, C). Figure 26(b) compares the same L,, LT data as in ( a )  with L, = ( (g /P)p -” /N3) i .  
Dillon (1982) introduces L, in an effort to minimize the influence of changing 
gradient Richardson numbers. 

From figure 26 (a.  b )  it is observed that when buoyancy forces are dynamically 
unimportant (close to the grid) neither sheared nor unsheared laboratory measure- 
ments exhibit trends similar to the oceanic data. However. when buoyancy 
forces dominate the dynamics of the largest scales both the unsheared and shear-flow 
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FIGURE 26. Comparison of laboratory and field lengthscale measurements. Solid symbols denote 
unsheared L, = p'/(ap/az) measurements of SHV; open symbols denote present sheared 
measurements of L,, 0 denote lake measurements of L, (Thorpe) from Dillon (1982). Arrows 
indicate increasing distance from grid. 

data for L, and Lo exhibit a slope and relative magnitude similar to Dillon's 
measurements. That is, L, and Lo remain proportional both €or the evolution of 
decaying (Ri > R,,,) and growing (Ri < R,,,) turbulence. 

While this comparison shows that the correlation of buoyancy and overturning 
lengthscales found by Dillon is consistent with our observed dynamical scenarios for 
the evolution of buoyancy-influenced turbulence, it cannot establish in which of his 
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observed cases the turbulence was decaying, growing, or in a nearly steady state. 
Field observations in which the mean shear is also measured should allow more 
extensive application of the present results to interpretation of oceanographic 
data. 

7. Concluding remarks 
We have attempted to study the dominant characteristics of turbulence in a 

linearly stable stratified uniform-mean shear flow. In  the laboratory we have 
approximated this flow by maintaining the region of constant mean velocity and 
density gradients larger than the developing lengthscale L,. In  particular we hoped 
to extend and refine the earlier experimental and theoretical work of Webster (1964), 
SHV, IHV and Tavoularis (1985). 

Extending Webster’s ( 1964) measurements further downstream from the inlet we 
observe that not only R, but also r are important parameters governing the 
development of stratified shear flows. By including the effects of dynamically active 
stable stratification in Tavoularis’ (1985) approximate theory, we have obtained an 
equation for the turbulent kinetic energy, (17),  robust enough to accommodate the 
broad range of behaviour that has been observed in the laboratory. When Ri > Ric, 
we observe that the relation between the lengthscales L,, Lo and L, and the value 
of the transition dissipation rate (etr) are similar to what SHV and IHV found for 
their stratified, unsheared, decaying grid-generated turbulent flow. For R, < Ricr, 
unlike the uniform mean flow case of XHV and IHV, both L, and Lo grow 
downstream with L,ILo approaching an asymptotic value that is a function of Ri. 

The principal funding for this work was provided by the National Science 
Foundation under Grant OCE82-05946 and OCE85- 11289, with partial support from 
DARPA Applied and Computational Mathematics Program Grant No. N00014-86- 
K-0758. 
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